CYP perpetration risk as per mechanistic-static modeling
mech_stat_cyp_risk.Rd
CYP perpetration risk as per mechanistic-static modeling
Usage
mech_stat_cyp_risk(
perp,
cyp_inh,
cyp_ind,
cyp_tdi = NULL,
d = 1,
include_induction = TRUE,
substr = cyp_reference_substrates,
cyp_kdeg = cyp_turnover
)
Arguments
- perp
The perpetrator object.
- cyp_inh
CYP inhibition data as data frame. The following fields are expected:
'name' The name of the perpetrator compound.
'cyp' The CYP enzyme as (upper case) character.
'ki' The \(K_i\) in \(\mu M\) as numeric.
'source' Optional source information as character.
- cyp_ind
The CYP induction data as data frame. The following fields are expected:
'name' The name of the perpetrator compound as character.
'cyp' The CYP enzyme as (upper case) character.
'emax' The \(E_{max}\), i.e., the maximum induction effect determined in vitro as numeric.
'ec50' The \(EC_{50}\) in \(\mu M\) as numeric.
'maxc' The maximal concentration in \(\mu M\) tested in the in vitro assay as numeric.
'source' Optional source information as character.
- cyp_tdi
The CYP TDI data as data frame. The following fields are expected:
'name' The perpetrator compound name as character.
'cyp' The CYP enzyme as character.
'ki' The \(K_I\) in \(\mu M\) as numeric.
'kinact' The \(k_{inact}\) in 1/h as numeric.
'source' Optional source information as character,
- d
Scaling factor, defaults to 1.
- include_induction
Switch to define whether induction effects should be included in the calculation (C-terms as per the FDA guideline)
- substr
The CYP probe substrates to be used as data frame, defaults to cyp_reference_substrates. The data frame is expected to have the following fields:
'cyp' The CYP enzyme as (upper case) character.
'substrate' The substrate name as character.
'fgut' The fraction of the drug escaping gut metabolism.
'fm' The fraction of the drug that undergoes hepatic metabolism.
'fmcyp' The fraction metabolized by the respective CYP enzyme.
- cyp_kdeg
The CYP turnover data as data frame. Defaults to the built-in reference data, cyp_turnover.
Details
In this approach, AUC ratios for CYP-specific probe substrates are calculated based on their known intestinal and hepatic metabolism. Direct (competitive) and time-dependent inhibition terms, as well as enzyme induction terms are considered. For details, refer to section 7.5.1.2 of the ICH M12 guideline.
$$AUCR = \frac{1}{A_g*B_g*C_g* \left(1-F_g \right)+F_g} * \frac{1}{A_h*B_h*C_h*f_m+\left(1-f_m\right)}$$
The individual terms are:
Time-dependent inhibition
$$B_g = \frac{k_{deg,g}}{k_{deg,g} + \frac{I_g*k_{inact}}{I_g+K_I}}$$
$$B_h = \frac{k_{deg,h}}{k_{deg,h} + \frac{I_h*k_{inact}}{I_h+K_I}}$$
Induction
$$C_g = 1 + \frac{d*E_{max}*I_g}{I_g+EC_{50}}$$
$$C_h = 1 + \frac{d*E_{max}*I_h}{I_h+EC_{50}}$$
with the hepatic inlet concentration \(I_h=I_{max,inlet,u}\) and the
intestinal concentration \(I_g=I_{enteric,u}\), see
key_concentrations()
.
\(d\) is a scaling factor for the CYP induction term with a standard value of 1. A different value can be used if warranted by prior experience with the experimental setup.
Examples
mech_stat_cyp_risk(examplinib_parent, examplinib_cyp_inhibition_data,
examplinib_cyp_induction_data)
#> cyp substrate kiu fgut fm fmcyp Ag Ah Bg Bh Cg
#> 1 CYP1A2 tizanidine NA 1.00 0.95 0.98 1.00000000 1.0000000 1 1 1.000000
#> 2 CYP2B6 <NA> NA NA NA NA 1.00000000 1.0000000 1 1 1.000000
#> 3 CYP2C8 repaglinide 11.00 1.00 1.00 0.61 0.62551298 0.9827625 1 1 1.000000
#> 4 CYP2C9 S-warfarin 0.60 1.00 1.00 0.91 0.08350072 0.7566792 1 1 1.000000
#> 5 CYP2C19 omeprazole 0.25 1.00 1.00 0.87 0.03657341 0.5644126 1 1 1.000000
#> 6 CYP2D6 desipramine NA 1.00 1.00 0.85 1.00000000 1.0000000 1 1 1.000000
#> 7 CYP3A4 midazolam 12.50 0.57 0.96 1.00 0.65494520 0.9847995 1 1 6.884569
#> Ch aucr risk
#> 1 1.000000 1.0000000 FALSE
#> 2 1.000000 NA NA
#> 3 1.000000 1.0106266 FALSE
#> 4 1.000000 1.2843927 TRUE
#> 5 1.000000 1.6102050 TRUE
#> 6 1.000000 1.0000000 FALSE
#> 7 1.773674 0.2321612 TRUE
mech_stat_cyp_risk(examplinib_parent, examplinib_cyp_inhibition_data,
examplinib_cyp_induction_data, examplinib_cyp_tdi_data)
#> cyp substrate kiu fgut fm fmcyp Ag Ah Bg
#> 1 CYP1A2 tizanidine NA 1.00 0.95 0.98 1.00000000 1.0000000 1.0000000
#> 2 CYP2B6 <NA> NA NA NA NA 1.00000000 1.0000000 1.0000000
#> 3 CYP2C8 repaglinide 11.00 1.00 1.00 0.61 0.62551298 0.9827625 1.0000000
#> 4 CYP2C9 S-warfarin 0.60 1.00 1.00 0.91 0.08350072 0.7566792 1.0000000
#> 5 CYP2C19 omeprazole 0.25 1.00 1.00 0.87 0.03657341 0.5644126 1.0000000
#> 6 CYP2D6 desipramine NA 1.00 1.00 0.85 1.00000000 1.0000000 1.0000000
#> 7 CYP3A4 midazolam 12.50 0.57 0.96 1.00 0.65494520 0.9847995 0.4348241
#> Bh Cg Ch aucr risk
#> 1 1.0000000 1.000000 1.000000 1.0000000 FALSE
#> 2 1.0000000 1.000000 1.000000 NA NA
#> 3 1.0000000 1.000000 1.000000 1.0106266 FALSE
#> 4 1.0000000 1.000000 1.000000 1.2843927 TRUE
#> 5 1.0000000 1.000000 1.000000 1.6102050 TRUE
#> 6 1.0000000 1.000000 1.000000 1.0000000 FALSE
#> 7 0.4757909 6.884569 1.773674 0.8446594 FALSE
mech_stat_cyp_risk(examplinib_parent, examplinib_cyp_inhibition_data,
examplinib_cyp_induction_data, examplinib_cyp_tdi_data,
include_induction = FALSE)
#> cyp substrate kiu fgut fm fmcyp Ag Ah Bg
#> 1 CYP1A2 tizanidine NA 1.00 0.95 0.98 1.00000000 1.0000000 1.0000000
#> 2 CYP2B6 <NA> NA NA NA NA 1.00000000 1.0000000 1.0000000
#> 3 CYP2C8 repaglinide 11.00 1.00 1.00 0.61 0.62551298 0.9827625 1.0000000
#> 4 CYP2C9 S-warfarin 0.60 1.00 1.00 0.91 0.08350072 0.7566792 1.0000000
#> 5 CYP2C19 omeprazole 0.25 1.00 1.00 0.87 0.03657341 0.5644126 1.0000000
#> 6 CYP2D6 desipramine NA 1.00 1.00 0.85 1.00000000 1.0000000 1.0000000
#> 7 CYP3A4 midazolam 12.50 0.57 0.96 1.00 0.65494520 0.9847995 0.4348241
#> Bh Cg Ch aucr risk
#> 1 1.0000000 1 1 1.000000 FALSE
#> 2 1.0000000 1 1 NA NA
#> 3 1.0000000 1 1 1.010627 FALSE
#> 4 1.0000000 1 1 1.284393 TRUE
#> 5 1.0000000 1 1 1.610205 TRUE
#> 6 1.0000000 1 1 1.000000 FALSE
#> 7 0.4757909 1 1 2.948311 TRUE
mech_stat_cyp_risk(examplinib_parent, examplinib_cyp_inhibition_data, NULL)
#> cyp substrate kiu fgut fm fmcyp Ag Ah Bg Bh Cg Ch
#> 1 CYP1A2 tizanidine NA 1.00 0.95 0.98 1.00000000 1.0000000 1 1 1 1
#> 2 CYP2B6 <NA> NA NA NA NA 1.00000000 1.0000000 1 1 1 1
#> 3 CYP2C8 repaglinide 11.00 1.00 1.00 0.61 0.62551298 0.9827625 1 1 1 1
#> 4 CYP2C9 S-warfarin 0.60 1.00 1.00 0.91 0.08350072 0.7566792 1 1 1 1
#> 5 CYP2C19 omeprazole 0.25 1.00 1.00 0.87 0.03657341 0.5644126 1 1 1 1
#> 6 CYP2D6 desipramine NA 1.00 1.00 0.85 1.00000000 1.0000000 1 1 1 1
#> 7 CYP3A4 midazolam 12.50 0.57 0.96 1.00 0.65494520 0.9847995 1 1 1 1
#> aucr risk
#> 1 1.000000 FALSE
#> 2 NA NA
#> 3 1.010627 FALSE
#> 4 1.284393 TRUE
#> 5 1.610205 TRUE
#> 6 1.000000 FALSE
#> 7 1.191612 FALSE